Data Context Adaptation for Accurate Recommendation with Additional Information

by   Hyunsik Jeon, et al.

Given a sparse rating matrix and an auxiliary matrix of users or items, how can we accurately predict missing ratings considering different data contexts of entities? Many previous studies proved that utilizing the additional information with rating data is helpful to improve the performance. However, existing methods are limited in that 1) they ignore the fact that data contexts of rating and auxiliary matrices are different, 2) they have restricted capability of expressing independence information of users or items, and 3) they assume the relation between a user and an item is linear. We propose DaConA, a neural network based method for recommendation with a rating matrix and an auxiliary matrix. DaConA is designed with the following three main ideas. First, we propose a data context adaptation layer to extract pertinent features for different data contexts. Second, DaConA represents each entity with latent interaction vector and latent independence vector. Unlike previous methods, both of the two vectors are not limited in size. Lastly, while previous matrix factorization based methods predict missing values through the inner-product of latent vectors, DaConA learns a non-linear function of them via a neural network. We show that DaConA is a generalized algorithm including the standard matrix factorization and the collective matrix factorization as special cases. Through comprehensive experiments on real-world datasets, we show that DaConA provides the state-of-the-art accuracy.


page 1

page 4


Optimization Matrix Factorization Recommendation Algorithm Based on Rating Centrality

Matrix factorization (MF) is extensively used to mine the user preferenc...

Boosting the Rating Prediction with Click Data and Textual Contents

Matrix factorization (MF) is one of the most efficient methods for ratin...

MatMat: Matrix Factorization by Matrix Fitting

Matrix factorization is a widely adopted recommender system technique th...

Latent Feature Based FM Model For Rating Prediction

Rating Prediction is a basic problem in Recommender System, and one of t...

Clustered Monotone Transforms for Rating Factorization

Exploiting low-rank structure of the user-item rating matrix has been th...

MFAI: A Scalable Bayesian Matrix Factorization Approach to Leveraging Auxiliary Information

In various practical situations, matrix factorization methods suffer fro...

Neural Network Matrix Factorization

Data often comes in the form of an array or matrix. Matrix factorization...

Please sign up or login with your details

Forgot password? Click here to reset