Decentralized Inertial Best-Response with Voluntary and Limited Communication in Random Communication Networks

by   Sarper Aydın, et al.

Multiple autonomous agents interact over a random communication network to maximize their individual utility functions which depend on the actions of other agents. We consider decentralized best-response with inertia type algorithms in which agents form beliefs about the future actions of other players based on local information, and take an action that maximizes their expected utility computed with respect to these beliefs or continue to take their previous action. We show convergence of these types of algorithms to a Nash equilibrium in weakly acyclic games under the condition that the belief update and information exchange protocols successfully learn the actions of other players with positive probability in finite time given a static environment, i.e., when other agents' actions do not change. We design a decentralized fictitious play algorithm with voluntary and limited communication (DFP-VL) protocols that satisfy this condition. In the voluntary communication protocol, each agent decides whom to exchange information with by assessing the novelty of its information and the potential effect of its information on others' assessments of their utility functions. The limited communication protocol entails agents sending only their most frequent action to agents that they decide to communicate with. Numerical experiments on a target assignment game demonstrate that the voluntary and limited communication protocol can more than halve the number of communication attempts while retaining the same convergence rate as DFP in which agents constantly attempt to communicate.


page 1

page 2

page 3

page 4


Decentralized Fictitious Play Converges Near a Nash Equilibrium in Near-Potential Games

We investigate convergence of decentralized fictitious play (DFP) in nea...

Decentralized Fictitious Play in Near-Potential Games with Time-Varying Communication Networks

We study the convergence properties of decentralized fictitious play (DF...

Optimal Eventual Byzantine Agreement Protocols with Omission Failures

Work on optimal protocols for Eventual Byzantine Agreement (EBA) – proto...

Strategic Contention Resolution in Multiple Channels

We consider the problem of resolving contention in communication network...

Preference Communication in Multi-Objective Normal-Form Games

We study the problem of multiple agents learning concurrently in a multi...

Are Multiagent Systems Resilient to Communication Failures?

A challenge in multiagent control systems is to ensure that they are app...

Agreement and Statistical Efficiency in Bayesian Perception Models

Bayesian models of group learning are studied in Economics since the 197...

Please sign up or login with your details

Forgot password? Click here to reset