Deep Representation Learning Characterized by Inter-class Separation for Image Clustering

by   Dipanjan Das, et al.

Despite significant advances in clustering methods in recent years, the outcome of clustering of a natural image dataset is still unsatisfactory due to two important drawbacks. Firstly, clustering of images needs a good feature representation of an image and secondly, we need a robust method which can discriminate these features for making them belonging to different clusters such that intra-class variance is less and inter-class variance is high. Often these two aspects are dealt with independently and thus the features are not sufficient enough to partition the data meaningfully. In this paper, we propose a method where we discover these features required for the separation of the images using deep autoencoder. Our method learns the image representation features automatically for the purpose of clustering and also select a coherent image and an incoherent image simultaneously for a given image so that the feature representation learning can learn better discriminative features for grouping the similar images in a cluster and at the same time separating the dissimilar images across clusters. Experiment results show that our method produces significantly better result than the state-of-the-art methods and we also show that our method is more generalized across different dataset without using any pre-trained model like other existing methods.


page 2

page 4


Consensus Clustering with Unsupervised Representation Learning

Recent advances in deep clustering and unsupervised representation learn...

Latent Tree Variational Autoencoder for Joint Representation Learning and Multidimensional Clustering

Recently, deep learning based clustering methods are shown superior to t...

Learning eating environments through scene clustering

It is well known that dietary habits have a significant influence on hea...

Learning Statistical Representation with Joint Deep Embedded Clustering

One of the most promising approaches for unsupervised learning is combin...

Multiresolution hierarchy co-clustering for semantic segmentation in sequences with small variations

This paper presents a co-clustering technique that, given a collection o...

Rethinking Robust Representation Learning Under Fine-grained Noisy Faces

Learning robust feature representation from large-scale noisy faces stan...

Image Clustering via the Principle of Rate Reduction in the Age of Pretrained Models

The advent of large pre-trained models has brought about a paradigm shif...

Please sign up or login with your details

Forgot password? Click here to reset