Deep Richardson-Lucy Deconvolution for Low-Light Image Deblurring

by   Liang Chen, et al.

Images taken under the low-light condition often contain blur and saturated pixels at the same time. Deblurring images with saturated pixels is quite challenging. Because of the limited dynamic range, the saturated pixels are usually clipped in the imaging process and thus cannot be modeled by the linear blur model. Previous methods use manually designed smooth functions to approximate the clipping procedure. Their deblurring processes often require empirically defined parameters, which may not be the optimal choices for different images. In this paper, we develop a data-driven approach to model the saturated pixels by a learned latent map. Based on the new model, the non-blind deblurring task can be formulated into a maximum a posterior (MAP) problem, which can be effectively solved by iteratively computing the latent map and the latent image. Specifically, the latent map is computed by learning from a map estimation network (MEN), and the latent image estimation process is implemented by a Richardson-Lucy (RL)-based updating scheme. To estimate high-quality deblurred images without amplified artifacts, we develop a prior estimation network (PEN) to obtain prior information, which is further integrated into the RL scheme. Experimental results demonstrate that the proposed method performs favorably against state-of-the-art algorithms both quantitatively and qualitatively on synthetic and real-world images.


page 2

page 3

page 6

page 7

page 8

page 9

page 10

page 11


Convergence Analysis of MAP based Blur Kernel Estimation

One popular approach for blind deconvolution is to formulate a maximum a...

Deep Blind Video Super-resolution

Existing video super-resolution (SR) algorithms usually assume that the ...

Learning a Discriminative Prior for Blind Image Deblurring

We present an effective blind image deblurring method based on a data-dr...

Neural Blind Deconvolution Using Deep Priors

Blind deconvolution is a classical yet challenging low-level vision prob...

Single-image Defocus Deblurring by Integration of Defocus Map Prediction Tracing the Inverse Problem Computation

In this paper, we consider the problem in defocus image deblurring. Prev...

Learning an Optimizer for Image Deconvolution

As an integral component of blind image deblurring, non-blind deconvolut...

Blind Image Deblurring Using Patch-Wise Minimal Pixels Regularization

Blind image deblurring is a long standing challenging problem in image p...

Please sign up or login with your details

Forgot password? Click here to reset