Detecting Feedback Vertex Sets of Size k in O^(2.7^k) Time

by   Jason Li, et al.

In the Feedback Vertex Set problem, one is given an undirected graph G and an integer k, and one needs to determine whether there exists a set of k vertices that intersects all cycles of G (a so-called feedback vertex set). Feedback Vertex Set is one of the most central problems in parameterized complexity: It served as an excellent test bed for many important algorithmic techniques in the field such as Iterative Compression [Guo et al. (JCSS'06)], Randomized Branching [Becker et al. (J. Artif. Intell. Res'00)] and Cut&Count [Cygan et al. (FOCS'11)]. In particular, there has been a long race for the smallest dependence f(k) in run times of the type O^(f(k)), where the O^ notation omits factors polynomial in n. This race seemed to be run in 2011, when a randomized algorithm O^(3^k) time algorithm based on Cut&Count was introduced. In this work, we show the contrary and give a O^(2.7^k) time randomized algorithm. Our algorithm combines all mentioned techniques with substantial new ideas: First, we show that, given a feedback vertex set of size k of bounded average degree, a tree decomposition of width (1-Ω(1))k can be found in polynomial time. Second, we give a randomized branching strategy inspired by the one from [Becker et al. (J. Artif. Intell. Res'00)] to reduce to the aforementioned bounded average degree setting. Third, we obtain significant run time improvements by employing fast matrix multiplication.


page 1

page 2

page 3

page 4


Close relatives (of Feedback Vertex Set), revisited

At IPEC 2020, Bergougnoux, Bonnet, Brettell, and Kwon showed that a numb...

Parameterized Max Min Feedback Vertex Set

Given a graph G and an integer k, Max Min FVS asks whether there exists ...

An improved FPT algorithm for Independent Feedback Vertex Set

We study the Independent Feedback Vertex Set problem - a variant of the ...

Parameterized Algorithms for Generalizations of Directed Feedback Vertex Set

The Directed Feedback Vertex Set (DFVS) problem takes as input a directe...

An O^*(1.84^k) Parameterized Algorithm for the Multiterminal Cut Problem

We study the multiterminal cut problem, which, given an n-vertex graph w...

Randomized contractions meet lean decompositions

The randomized contractions technique, introduced by Chitnis et al. in 2...

On r-Simple k-Path and Related Problems Parameterized by k/r

Abasi et al. (2014) and Gabizon et al. (2015) studied the following prob...

Please sign up or login with your details

Forgot password? Click here to reset