Diffusion approximations and control variates for MCMC

08/05/2018
by   Nicolas Brosse, et al.
0

A new methodology is presented for the construction of control variates to reduce the variance of additive functionals of Markov Chain Monte Carlo (MCMC) samplers. Our control variates are defined as linear combinations of functions whose coefficients are obtained by minimizing a proxy for the asymptotic variance. The construction is theoretically justified by two new results. We first show that the asymptotic variances of some well-known MCMC algorithms, including the Random Walk Metropolis and the (Metropolis) Unadjusted/Adjusted Langevin Algorithm, are close to the asymptotic variance of the Langevin diffusion. Second, we provide an explicit representation of the optimal coefficients minimizing the asymptotic variance of the Langevin diffusion. Several examples of Bayesian inference problems demonstrate that the corresponding reduction in the variance is significant, and that in some cases it can be dramatic.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset