Does generalization performance of l^q regularization learning depend on q? A negative example
l^q-regularization has been demonstrated to be an attractive technique in machine learning and statistical modeling. It attempts to improve the generalization (prediction) capability of a machine (model) through appropriately shrinking its coefficients. The shape of a l^q estimator differs in varying choices of the regularization order q. In particular, l^1 leads to the LASSO estimate, while l^2 corresponds to the smooth ridge regression. This makes the order q a potential tuning parameter in applications. To facilitate the use of l^q-regularization, we intend to seek for a modeling strategy where an elaborative selection on q is avoidable. In this spirit, we place our investigation within a general framework of l^q-regularized kernel learning under a sample dependent hypothesis space (SDHS). For a designated class of kernel functions, we show that all l^q estimators for 0< q < ∞ attain similar generalization error bounds. These estimated bounds are almost optimal in the sense that up to a logarithmic factor, the upper and lower bounds are asymptotically identical. This finding tentatively reveals that, in some modeling contexts, the choice of q might not have a strong impact in terms of the generalization capability. From this perspective, q can be arbitrarily specified, or specified merely by other no generalization criteria like smoothness, computational complexity, sparsity, etc..
READ FULL TEXT