Downward Self-Reducibility in TFNP

09/21/2022
by   Prahladh Harsha, et al.
0

A problem is downward self-reducible if it can be solved efficiently given an oracle that returns solutions for strictly smaller instances. In the decisional landscape, downward self-reducibility is well studied and it is known that all downward self-reducible problems are in PSPACE. In this paper, we initiate the study of downward self-reducible search problems which are guaranteed to have a solution – that is, the downward self-reducible problems in TFNP. We show that most natural -complete problems are downward self-reducible and any downward self-reducible problem in TFNP is contained in PLS. Furthermore, if the downward self-reducible problem is in TFUP (i.e. it has a unique solution), then it is actually contained in UEOPL, a subclass of CLS. This implies that if integer factoring is downward self-reducible then it is in fact in UEOPL, suggesting that no efficient factoring algorithm exists using the factorization of smaller numbers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset