Dynamic Matching: Reducing Integral Algorithms to Approximately-Maximal Fractional Algorithms

11/17/2017
by   Moab Arar, et al.
0

We present a simple randomized reduction from fully-dynamic integral matching algorithms to fully-dynamic approximately-maximal" fractional matching algorithms. Applying this reduction to the recent fractional matching algorithm of Bhattacharya, Henzinger, and Nanongkai (SODA 2017), we obtain a novel result for the integral problem. Specifically, our main result is a randomized fully-dynamic (2+ϵ)-approximate integral matching algorithm with small polylog worst-case update time. For the (2+ϵ)-approximation regime only a fractional fully-dynamic (2+ϵ)-matching algorithm with worst-case polylog update time was previously known, due to Bhattacharya et al. (SODA 2017). Our algorithm is the first algorithm that maintains approximate matchings with worst-case update time better than polynomial, for any constant approximation ratio.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro