Dynamic Scheduling of Skippable Periodic Tasks with Energy Efficiency in Weakly Hard Real-Time System
Energy consumption is a critical design issue in real-time systems, especially in battery- operated systems. Maintaining high performance, while extending the battery life between charges is an interesting challenge for system designers. Dynamic Voltage Scaling (DVS) allows a processor to dynamically change speed and voltage at run time, thereby saving energy by spreading run cycles into idle time. Knowing when to use full power and when not, requires the cooperation of the operating system scheduler. Usually, higher processor voltage and frequency leads to higher system throughput while energy reduction can be obtained using lower voltage and frequency. Instead of lowering processor voltage and frequency as much as possible, energy efficient real-time scheduling adjusts voltage and frequency according to some optimization criteria, such as low energy consumption or high throughput, while it meets the timing constraints of the real-time tasks. As the quantity and functional complexity of battery powered portable devices continues to raise, energy efficient design of such devices has become increasingly important. Many real-time scheduling algorithms have been developed recently to reduce energy consumption in the portable devices that use DVS capable processors. Three algorithms namely Red Tasks Only (RTO), Blue When Possible (BWP) and Red as Late as Possible (RLP) are proposed in the literature to schedule the real-time tasks in Weakly-hard real-time systems. This paper proposes optimal slack management algorithms to make the above existing weakly hard real-time scheduling algorithms energy efficient using DVS and DPD techniques.
READ FULL TEXT