Effect of hydraulic conductivity and permeability on drug distribution, an investigation based on a part of a real tissue
In this study, a computational simulation is employed to place two essential parameters, the permeability of vessels and hydraulic conductivity, under assessment. These parameters impact the movement of drug particles through vessels, and normal and tumoral tissue to examine the concentration of nanoparticles, interstitial pressure, and velocity. To provide a geometric model detailing the capillary network under normal and tumoral tissue conditions, the geometry is extracted via real image processing. Subsequently, the real conditions were considered to solve the equations pertaining to drug transport and intravascular and interstitial flows in the tissue. The results showed that an increase in permeability and hydraulic conductivity leads to an increase in drug concentration in the tumor. Finally, Methotrexate drug has the most effect in the treatment of tumors. Overall, the computational model for anti-cancer delivery provides a powerful tool for understanding and optimizing drug delivery strategies for the treatment of cancer.
READ FULL TEXT