DeepAI AI Chat
Log In Sign Up

Efficient Bayesian computation for low-photon imaging problems

by   Savvas Melidonis, et al.
Heriot-Watt University

This paper studies a new and highly efficient Markov chain Monte Carlo (MCMC) methodology to perform Bayesian inference in low-photon imaging problems, with particular attention to situations involving observation noise processes that deviate significantly from Gaussian noise, such as binomial, geometric and low-intensity Poisson noise. These problems are challenging for many reasons. From an inferential viewpoint, low-photon numbers lead to severe identifiability issues, poor stability and high uncertainty about the solution. Moreover, low-photon models often exhibit poor regularity properties that make efficient Bayesian computation difficult; e.g., hard non-negativity constraints, non-smooth priors, and log-likelihood terms with exploding gradients. More precisely, the lack of suitable regularity properties hinders the use of state-of-the-art Monte Carlo methods based on numerical approximations of the Langevin stochastic differential equation (SDE), as both the SDE and its numerical approximations behave poorly. We address this difficulty by proposing an MCMC methodology based on a reflected and regularised Langevin SDE, which is shown to be well-posed and exponentially ergodic under mild and easily verifiable conditions. This then allows us to derive four reflected proximal Langevin MCMC algorithms to perform Bayesian computation in low-photon imaging problems. The proposed approach is demonstrated with a range of experiments related to image deblurring, denoising, and inpainting under binomial, geometric and Poisson noise.


page 13

page 15

page 16

page 17

page 19

page 20


Accelerating proximal Markov chain Monte Carlo by using explicit stabilised methods

We present a highly efficient proximal Markov chain Monte Carlo methodol...

High-dimensional Bayesian model selection by proximal nested sampling

Imaging methods often rely on Bayesian statistical inference strategies ...

Gaussian Approximation of Collective Graphical Models

The Collective Graphical Model (CGM) models a population of independent ...

Unsupervised PET Reconstruction from a Bayesian Perspective

Positron emission tomography (PET) reconstruction has become an ill-pose...

The split Gibbs sampler revisited: improvements to its algorithmic structure and augmented target distribution

This paper proposes a new accelerated proximal Markov chain Monte Carlo ...

Patch-Based Image Restoration using Expectation Propagation

This paper presents a new Expectation Propagation (EP) framework for ima...