Efficient Inversion of Matrix φ-Functions of Low Order

02/15/2023
by   L. Gemignani, et al.
0

The paper is concerned with efficient numerical methods for solving a linear system ϕ(A) x= b, where ϕ(z) is a ϕ-function and A∈ℝ^N× N. In particular in this work we are interested in the computation of ϕ(A)^-1 b for the case where ϕ(z)=ϕ_1(z)=e^z-1/z, ϕ(z)=ϕ_2(z)=e^z-1-z/z^2. Under suitable conditions on the spectrum of A we design fast algorithms for computing both ϕ_ℓ(A)^-1 and ϕ_ℓ(A)^-1 b based on Newton's iteration and Krylov-type methods, respectively. Adaptations of these schemes for structured matrices are considered. In particular the cases of banded and more generally quasiseparable matrices are investigated. Numerical results are presented to show the effectiveness of our proposed algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro