Eigenvector Computation and Community Detection in Asynchronous Gossip Models

04/23/2018
by   Frederik Mallmann-Trenn, et al.
0

We give a simple distributed algorithm for computing adjacency matrix eigenvectors for the communication graph in an asynchronous gossip model. We show how to use this algorithm to give state-of-the-art asynchronous community detection algorithms when the communication graph is drawn from the well-studied stochastic block model. Our methods also apply to a natural alternative model of randomized communication, where nodes within a community communicate more frequently than nodes in different communities. Our analysis simplifies and generalizes prior work by forging a connection between asynchronous eigenvector computation and Oja's algorithm for streaming principal component analysis. We hope that our work serves as a starting point for building further connections between the analysis of stochastic iterative methods, like Oja's algorithm, and work on asynchronous and gossip-type algorithms for distributed computation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro