Energy Resolved Neutron Imaging for Strain Reconstruction using the Finite Element Method

02/21/2020
by   Riya Aggarwal, et al.
0

A pulsed neutron imaging technique is used to reconstruct the residual strain within a polycrystalline material from Bragg edge strain images. This technique offers the possibility of a nondestructive analysis of strain fields with a high spatial resolution. A finite element approach is used to reconstruct the strain using the least square method constrained by the conditions of equilibrium. The procedure is developed and verified by validating for a cantilevered beam problem. It is subsequently demonstrated by reconstructing the strain from experimental data for a ring-and-plug sample, measured at the spallation neutron source RADEN at J-PARC in Japan. The reconstruction is validated by comparison with conventional constant wavelength strain measurements on the KOWARI diffractometer at ANSTO in Australia. It is also shown that the addition of a simple Tikhonov regularization can improve the reconstruction.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro