Enhancing Targeted Attack Transferability via Diversified Weight Pruning
Malicious attackers can generate targeted adversarial examples by imposing human-imperceptible noise on images, forcing neural network models to produce specific incorrect outputs. With cross-model transferable adversarial examples, the vulnerability of neural networks remains even if the model information is kept secret from the attacker. Recent studies have shown the effectiveness of ensemble-based methods in generating transferable adversarial examples. However, existing methods fall short under the more challenging scenario of creating targeted attacks transferable among distinct models. In this work, we propose Diversified Weight Pruning (DWP) to further enhance the ensemble-based methods by leveraging the weight pruning method commonly used in model compression. Specifically, we obtain multiple diverse models by a random weight pruning method. These models preserve similar accuracies and can serve as additional models for ensemble-based methods, yielding stronger transferable targeted attacks. Experiments on ImageNet-Compatible Dataset under the more challenging scenarios are provided: transferring to distinct architectures and to adversarially trained models. The results show that our proposed DWP improves the targeted attack success rates with up to 4.1 combination of state-of-the-art methods, respectively
READ FULL TEXT