Estimating Achilles tendon healing progress with convolutional neural networks
Quantitative assessment of a treatment progress in the Achilles tendon healing process - one of the most common musculoskeletal disorder in modern medical practice - is typically a long and complex process: multiple MRI protocols need to be acquired and analysed by radiology experts. In this paper, we propose to significantly reduce the complexity of this assessment using a novel method based on a pre-trained convolutional neural network. We first train our neural network on over 500,000 2D axial cross-sections from over 3000 3D MRI studies to classify MRI images as belonging to a healthy or injured class, depending on the patient's condition. We then take the outputs of modified pre-trained network and apply linear regression on the PCA-reduced space of the features to assess treatment progress. Our method allows to reduce up to 5-fold the amount of data needed to be registered during the MRI scan without any information loss. Furthermore, we are able to predict the healing process phase with equal accuracy to human experts in 3 out of 6 main criteria. Finally, contrary to the current approaches to regeneration assessment that rely on radiologist subjective opinion, our method allows to objectively compare different treatments methods which can lead to improved diagnostics and patient's recovery.
READ FULL TEXT