Estimating the Mixing Time of Ergodic Markov Chains

02/01/2019
by   Geoffrey Wolfer, et al.
0

We address the problem of estimating the mixing time t_mix of an arbitrary ergodic finite Markov chain from a single trajectory of length m. The reversible case was addressed by Hsu et al. [2017], who left the general case as an open problem. In the reversible case, the analysis is greatly facilitated by the fact that the Markov operator is self-adjoint, and Weyl's inequality allows for a dimension-free perturbation analysis of the empirical eigenvalues. As Hsu et al. point out, in the absence of reversibility (and hence, the non-symmetry of the pair probabilities matrix), the existing perturbation analysis has a worst-case exponential dependence on the number of states d. Furthermore, even if an eigenvalue perturbation analysis with better dependence on d were available, in the non-reversible case the connection between the spectral gap and the mixing time is not nearly as straightforward as in the reversible case. Our key insight is to estimate the pseudo-spectral gap instead, which allows us to overcome the loss of self-adjointness and to achieve a polynomial dependence on d and the minimal stationary probability π_. Additionally, in the reversible case, we obtain simultaneous nearly (up to logarithmic factors) minimax rates in t_mix and precision ε, closing a gap in Hsu et al., who treated ε as constant in the lower bounds. Finally, we construct fully empirical confidence intervals for the pseudo-spectral gap, which shrink to zero at a rate of roughly 1/√(m), and improve the state of the art in even the reversible case.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro