Fast and Scalable Computation of the Forward and Inverse Discrete Periodic Radon Transform
The Discrete Periodic Radon Transform (DPRT) has been extensively used in applications that involve image reconstructions from projections. This manuscript introduces a fast and scalable approach for computing the forward and inverse DPRT that is based on the use of: (i) a parallel array of fixed-point adder trees, (ii) circular shift registers to remove the need for accessing external memory components when selecting the input data for the adder trees, (iii) an image block-based approach to DPRT computation that can fit the proposed architecture to available resources, and (iv) fast transpositions that are computed in one or a few clock cycles that do not depend on the size of the input image. As a result, for an N× N image (N prime), the proposed approach can compute up to N^2 additions per clock cycle. Compared to previous approaches, the scalable approach provides the fastest known implementations for different amounts of computational resources. For example, for a 251× 251 image, for approximately 25% fewer flip-flops than required for a systolic implementation, we have that the scalable DPRT is computed 36 times faster. For the fastest case, we introduce optimized architectures that can compute the DPRT and its inverse in just 2N+⌈log_2N⌉+1 and 2N+3⌈log_2N⌉+B+2 cycles respectively, where B is the number of bits used to represent each input pixel. On the other hand, the scalable DPRT approach requires more 1-bit additions than for the systolic implementation and provides a trade-off between speed and additional 1-bit additions. All of the proposed DPRT architectures were implemented in VHDL and validated using an FPGA implementation.
READ FULL TEXT