FastFCA-AS: Joint Diagonalization Based Acceleration of Full-Rank Spatial Covariance Analysis for Separating Any Number of Sources

by   Nobutaka Ito, et al.

Here we propose FastFCA-AS, an accelerated algorithm for Full-rank spatial Covariance Analysis (FCA), which is a robust audio source separation method proposed by Duong et al. ["Under-determined reverberant audio source separation using a full-rank spatial covariance model," IEEE Trans. ASLP, vol. 18, no. 7, pp. 1830-1840, Sept. 2010]. In the conventional FCA, matrix inversion and matrix multiplication are required at each time-frequency point in each iteration of an iterative parameter estimation algorithm. This causes a heavy computational load, thereby rendering the FCA infeasible in many applications. To overcome this drawback, we take a joint diagonalization approach, whereby matrix inversion and matrix multiplication are reduced to mere inversion and multiplication of diagonal entries. This makes the FastFCA-AS significantly faster than the FCA and even applicable to observed data of long duration or a situation with restricted computational resources. Although we have already proposed another acceleration of the FCA for two sources, the proposed FastFCA-AS is applicable to an arbitrary number of sources. In an experiment with three sources and three microphones, the FastFCA-AS was over 420 times faster than the FCA with a slightly better source separation performance.


page 1

page 2

page 3

page 4


FastFCA: A Joint Diagonalization Based Fast Algorithm for Audio Source Separation Using A Full-Rank Spatial Covariance Model

A source separation method using a full-rank spatial covariance model ha...

Acceleration of rank-constrained spatial covariance matrix estimation for blind speech extraction

In this paper, we propose new accelerated update rules for rank-constrai...

A Joint Diagonalization Based Efficient Approach to Underdetermined Blind Audio Source Separation Using the Multichannel Wiener Filter

This paper presents a computationally efficient approach to blind source...

Under-determined reverberant audio source separation using a full-rank spatial covariance model

This article addresses the modeling of reverberant recording environment...

Joint-Diagonalizability-Constrained Multichannel Nonnegative Matrix Factorization Based on Multivariate Complex Sub-Gaussian Distribution

In this paper, we address a statistical model extension of multichannel ...

Joint Dereverberation and Separation with Iterative Source Steering

We propose a new algorithm for joint dereverberation and blind source se...

Shift-Invariant Kernel Additive Modelling for Audio Source Separation

A major goal in blind source separation to identify and separate sources...

Please sign up or login with your details

Forgot password? Click here to reset