Federated Hypergradient Descent

11/03/2022
by   Andrew K Kan, et al.
0

In this work, we explore combining automatic hyperparameter tuning and optimization for federated learning (FL) in an online, one-shot procedure. We apply a principled approach on a method for adaptive client learning rate, number of local steps, and batch size. In our federated learning applications, our primary motivations are minimizing communication budget as well as local computational resources in the training pipeline. Conventionally, hyperparameter tuning methods involve at least some degree of trial-and-error, which is known to be sample inefficient. In order to address our motivations, we propose FATHOM (Federated AuTomatic Hyperparameter OptiMization) as a one-shot online procedure. We investigate the challenges and solutions of deriving analytical gradients with respect to the hyperparameters of interest. Our approach is inspired by the fact that, with the exception of local data, we have full knowledge of all components involved in our training process, and this fact can be exploited in our algorithm impactfully. We show that FATHOM is more communication efficient than Federated Averaging (FedAvg) with optimized, static valued hyperparameters, and is also more computationally efficient overall. As a communication efficient, one-shot online procedure, FATHOM solves the bottleneck of costly communication and limited local computation, by eliminating a potentially wasteful tuning process, and by optimizing the hyperparamters adaptively throughout the training procedure without trial-and-error. We show our numerical results through extensive empirical experiments with the Federated EMNIST-62 (FEMNIST) and Federated Stack Overflow (FSO) datasets, using FedJAX as our baseline framework.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
06/08/2021

Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing

Tuning hyperparameters is a crucial but arduous part of the machine lear...
research
08/16/2023

FedPop: Federated Population-based Hyperparameter Tuning

Federated Learning (FL) is a distributed machine learning (ML) paradigm,...
research
12/17/2022

On Noisy Evaluation in Federated Hyperparameter Tuning

Hyperparameter tuning is critical to the success of federated learning a...
research
10/15/2021

Evaluation of Hyperparameter-Optimization Approaches in an Industrial Federated Learning System

Federated Learning (FL) decouples model training from the need for direc...
research
06/02/2023

Resource-Efficient Federated Hyperdimensional Computing

In conventional federated hyperdimensional computing (HDC), training lar...
research
03/12/2022

Auto-FedRL: Federated Hyperparameter Optimization for Multi-institutional Medical Image Segmentation

Federated learning (FL) is a distributed machine learning technique that...
research
08/31/2023

Communication-Efficient Decentralized Federated Learning via One-Bit Compressive Sensing

Decentralized federated learning (DFL) has gained popularity due to its ...

Please sign up or login with your details

Forgot password? Click here to reset