Finding the closest normal structured matrix
Given a structured matrix A we study the problem of finding the closest normal matrix with the same structure. The structures of our interest are: Hamiltonian, skew-Hamiltonian, per-Hermitian, and perskew-Hermitian. We develop a structure-preserving Jacobi-type algorithm for finding the closest normal structured matrix and show that such algorithm converges to a stationary point of the objective function.
READ FULL TEXT