Forward Neural Network for Time Series Anomaly Detection

12/20/2018
by   Zhang Rong, et al.
0

Time series anomaly detection is usually formulated as finding outlier data points relative to some usual data, which is also an important problem in industry and academia. To ensure systems working stably, internet companies, banks and other companies need to monitor time series, which is called KPI (Key Performance Indicators), such as CPU used, number of orders, number of online users and so on. However, millions of time series have several shapes (e.g. seasonal KPIs, KPIs of timed tasks and KPIs of CPU used), so that it is very difficult to use a simple statistical model to detect anomaly for all kinds of time series. Although some anomaly detectors have developed many years and some supervised models are also available in this field, we find many methods have their own disadvantages. In this paper, we present our system, which is based on deep forward neural network and detect anomaly points of time series. The main difference between our system and other systems based on supervised models is that we do not need feature engineering of time series to train deep forward neural network in our system, which is essentially an end-to-end system.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro