Fusion of stereo and still monocular depth estimates in a self-supervised learning context

03/20/2018
by   Diogo Martins, et al.
0

We study how autonomous robots can learn by themselves to improve their depth estimation capability. In particular, we investigate a self-supervised learning setup in which stereo vision depth estimates serve as targets for a convolutional neural network (CNN) that transforms a single still image to a dense depth map. After training, the stereo and mono estimates are fused with a novel fusion method that preserves high confidence stereo estimates, while leveraging the CNN estimates in the low-confidence regions. The main contribution of the article is that it is shown that the fused estimates lead to a higher performance than the stereo vision estimates alone. Experiments are performed on the KITTI dataset, and on board of a Parrot SLAMDunk, showing that even rather limited CNNs can help provide stereo vision equipped robots with more reliable depth maps for autonomous navigation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset