Gaussian Processes and Statistical Decision-making in Non-Euclidean Spaces

by   Alexander Terenin, et al.

Bayesian learning using Gaussian processes provides a foundational framework for making decisions in a manner that balances what is known with what could be learned by gathering data. In this dissertation, we develop techniques for broadening the applicability of Gaussian processes. This is done in two ways. Firstly, we develop pathwise conditioning techniques for Gaussian processes, which allow one to express posterior random functions as prior random functions plus a dependent update term. We introduce a wide class of efficient approximations built from this viewpoint, which can be randomly sampled once in advance, and evaluated at arbitrary locations without any subsequent stochasticity. This key property improves efficiency and makes it simpler to deploy Gaussian process models in decision-making settings. Secondly, we develop a collection of Gaussian process models over non-Euclidean spaces, including Riemannian manifolds and graphs. We derive fully constructive expressions for the covariance kernels of scalar-valued Gaussian processes on Riemannian manifolds and graphs. Building on these ideas, we describe a formalism for defining vector-valued Gaussian processes on Riemannian manifolds. The introduced techniques allow all of these models to be trained using standard computational methods. In total, these contributions make Gaussian processes easier to work with and allow them to be used within a wider class of domains in an effective and principled manner. This, in turn, makes it possible to potentially apply Gaussian processes to novel decision-making settings.


page 1

page 2

page 3

page 4


Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge Independent Projected Kernels

Gaussian processes are machine learning models capable of learning unkno...

Matern Gaussian processes on Riemannian manifolds

Gaussian processes are an effective model class for learning unknown fun...

Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces I: the Compact Case

Gaussian processes are arguably the most important model class in spatia...

Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces II: non-compact symmetric spaces

Gaussian processes are arguably the most important class of spatiotempor...

Posterior Contraction Rates for Matérn Gaussian Processes on Riemannian Manifolds

Gaussian processes are used in many machine learning applications that r...

Isotropic Gaussian Processes on Finite Spaces of Graphs

We propose a principled way to define Gaussian process priors on various...

Disintegration of Gaussian Measures for Sequential Assimilation of Linear Operator Data

Gaussian processes appear as building blocks in various stochastic model...

Please sign up or login with your details

Forgot password? Click here to reset