Generalizable Adversarial Attacks Using Generative Models

05/26/2019
by   Avishek Joey Bose, et al.
0

Adversarial attacks on deep neural networks traditionally rely on a constrained optimization paradigm, where an optimization procedure is used to obtain a single adversarial perturbation for a given input example. Here, we instead view adversarial attacks as a generative modelling problem, with the goal of producing entire distributions of adversarial examples given an unperturbed input. We show that this generative perspective can be used to design a unified encoder-decoder framework, which is domain-agnostic in that the same framework can be employed to attack different domains with minimal modification. Across three diverse domains---images, text, and graphs---our approach generates whitebox attacks with success rates that are competitive with or superior to existing approaches, with a new state-of-the-art achieved in the graph domain. Finally, we demonstrate that our generative framework can efficiently generate a diverse set of attacks for a single given input, and is even capable of attacking unseen test instances in a zero-shot manner, exhibiting attack generalization.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro