Generalized Implicit Factorization Problem

04/18/2023
by   Yansong Feng, et al.
0

The Implicit Factorization Problem was first introduced by May and Ritzenhofen at PKC'09. This problem aims to factorize two RSA moduli N_1=p_1q_1 and N_2=p_2q_2 when their prime factors share a certain number of least significant bits (LSBs). They proposed a lattice-based algorithm to tackle this problem and extended it to cover k>2 RSA moduli. Since then, several variations of the Implicit Factorization Problem have been studied, including the cases where p_1 and p_2 share some most significant bits (MSBs), middle bits, or both MSBs and LSBs at the same position. In this paper, we explore a more general case of the Implicit Factorization Problem, where the shared bits are located at different and unknown positions for different primes. We propose a lattice-based algorithm and analyze its efficiency under certain conditions. We also present experimental results to support our analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset