Generative or Contrastive? Phrase Reconstruction for Better Sentence Representation Learning

04/20/2022
by   Bohong Wu, et al.
0

Though offering amazing contextualized token-level representations, current pre-trained language models actually take less attention on acquiring sentence-level representation during its self-supervised pre-training. If self-supervised learning can be distinguished into two subcategories, generative and contrastive, then most existing studies show that sentence representation learning may more benefit from the contrastive methods but not the generative methods. However, contrastive learning cannot be well compatible with the common token-level generative self-supervised learning, and does not guarantee good performance on downstream semantic retrieval tasks. Thus, to alleviate such obvious inconveniences, we instead propose a novel generative self-supervised learning objective based on phrase reconstruction. Empirical studies show that our generative learning may yield powerful enough sentence representation and achieve performance in Sentence Textual Similarity (STS) tasks on par with contrastive learning. Further, in terms of unsupervised setting, our generative method outperforms previous state-of-the-art SimCSE on the benchmark of downstream semantic retrieval tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset