GitTables: A Large-Scale Corpus of Relational Tables

by   Madelon Hulsebos, et al.

The practical success of deep learning has sparked interest in improving relational table tasks, like data search, with models trained on large table corpora. Existing corpora primarily contain tables extracted from HTML pages, limiting the capability to represent offline database tables. To train and evaluate high-capacity models for applications beyond the Web, we need additional resources with tables that resemble relational database tables. Here we introduce GitTables, a corpus of currently 1.7M relational tables extracted from GitHub. Our continuing curation aims at growing the corpus to at least 20M tables. We annotate table columns in GitTables with more than 2K different semantic types from and DBpedia. Our column annotations consist of semantic types, hierarchical relations, range types and descriptions. The corpus is available at Our analysis of GitTables shows that its structure, content, and topical coverage differ significantly from existing table corpora. We evaluate our annotation pipeline on hand-labeled tables from the T2Dv2 benchmark and find that our approach provides results on par with human annotations. We demonstrate a use case of GitTables by training a semantic type detection model on it and obtain high prediction accuracy. We also show that the same model trained on tables from theWeb generalizes poorly.


page 1

page 2

page 3

page 4


Sato: Contextual Semantic Type Detection in Tables

Detecting the semantic types of data columns in relational tables is imp...

TabSim: A Siamese Neural Network for Accurate Estimation of Table Similarity

Tables are a popular and efficient means of presenting structured inform...

Making Table Understanding Work in Practice

Understanding the semantics of tables at scale is crucial for tasks like...

Synthesizing Mapping Relationships Using Table Corpus

Mapping relationships, such as (country, country-code) or (company, stoc...

TURL: Table Understanding through Representation Learning

Relational tables on the Web store a vast amount of knowledge. Owing to ...

Table2Charts: Learning Shared Representations for Recommending Charts on Multi-dimensional Data

It is common for people to create different types of charts to explore a...

Analysis of the quotation corpus of the Russian Wiktionary

The quantitative evaluation of quotations in the Russian Wiktionary was ...

Please sign up or login with your details

Forgot password? Click here to reset