Greedy Compositional Clustering for Unsupervised Learning of Hierarchical Compositional Models

01/22/2017
by   Adam Kortylewski, et al.
0

This paper proposes to integrate a feature pursuit learning process into a greedy bottom-up learning scheme. The algorithm combines the benefits of bottom-up and top-down approaches for learning hierarchical models: It allows to induce the hierarchical structure of objects in an unsupervised manner, while avoiding a hard decision on the activation of parts. We follow the principle of compositionality by assembling higher-order parts from elements of lower layers in the hierarchy. The parts are learned greedily with an EM-type process that iterates between image encoding and part re-learning. The process stops when a candidate part is not able to find a free niche in the image. The algorithm proceeds layer by layer in a bottom-up manner until no further compositions are found. A subsequent top-down process composes the learned hierarchical shape vocabulary into a holistic object model. Experimental evaluation of the approach shows state-of-the-art performance on a domain adaptation task. Moreover, we demonstrate the capability of learning complex, semantically meaningful hierarchical compositional models without supervision.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset