Grundy Coloring friends, Half-Graphs, Bicliques

by   Pierre Aboulker, et al.

The first-fit coloring is a heuristic that assigns to each vertex, arriving in a specified order σ, the smallest available color. The problem Grundy Coloring asks how many colors are needed for the most adversarial vertex ordering σ, i.e., the maximum number of colors that the first-fit coloring requires over all possible vertex orderings. Since its inception by Grundy in 1939, Grundy Coloring has been examined for its structural and algorithmic aspects. A brute-force f(k)n^2^k-1-time algorithm for Grundy Coloring on general graphs is not difficult to obtain, where k is the number of colors required by the most adversarial vertex ordering. It was asked several times whether the dependency on k in the exponent of n can be avoided or reduced, and its answer seemed elusive until now. We prove that Grundy Coloring is W[1]-hard and the brute-force algorithm is essentially optimal under the Exponential Time Hypothesis, thus settling this question by the negative. The key ingredient in our W[1]-hardness proof is to use so-called half-graphs as a building block to transmit a color from one vertex to another. Leveraging the half-graphs, we also prove that b-Chromatic Core is W[1]-hard, whose parameterized complexity was posed as an open question by Panolan et al. [JCSS '17]. A natural follow-up question is, how the parameterized complexity changes in the absence of (large) half-graphs. We establish fixed-parameter tractability on K_t,t-free graphs for b-Chromatic Core and Partial Grundy Coloring, making a step toward answering this question. The key combinatorial lemma underlying the tractability result might be of independent interest.


page 13

page 15


Structural Parameterizations for Equitable Coloring

An n-vertex graph is equitably k-colorable if there is a proper coloring...

Parameterized Complexity of Equitable Coloring

A graph on n vertices is equitably k-colorable if it is k-colorable and ...

More results on the z-chromatic number of graphs

By a z-coloring of a graph G we mean any proper vertex coloring consisti...

On the Tractability of (k,i)-Coloring

In an undirected graph, a proper (k, i)-coloring is an assignment of a s...

Palette Sparsification Beyond (Δ+1) Vertex Coloring

A recent palette sparsification theorem of Assadi, Chen, and Khanna [SOD...

Improved Dynamic Graph Coloring

This paper studies the fundamental problem of graph coloring in fully dy...

Wave Function Collapse Coloring: A New Heuristic for Fast Vertex Coloring

In this paper, we propose a high-speed greedy sequential algorithm for t...

Please sign up or login with your details

Forgot password? Click here to reset