Hierarchical Attentive Recurrent Tracking
Class-agnostic object tracking is particularly difficult in cluttered environments as target specific discriminative models cannot be learned a priori. Inspired by how the human visual cortex employs spatial attention and separate "where" and "what" processing pathways to actively suppress irrelevant visual features, this work develops a hierarchical attentive recurrent model for single object tracking in videos. The first layer of attention discards the majority of background by selecting a region containing the object of interest, while the subsequent layers tune in on visual features particular to the tracked object. This framework is fully differentiable and can be trained in a purely data driven fashion by gradient methods. To improve training convergence, we augment the loss function with terms for a number of auxiliary tasks relevant for tracking. Evaluation of the proposed model is performed on two datasets: pedestrian tracking on the KTH activity recognition dataset and the more difficult KITTI object tracking dataset.
READ FULL TEXT