HiResCAM: Explainable Multi-Organ Multi-Abnormality Prediction in 3D Medical Images

Understanding model predictions is critical in healthcare, to facilitate rapid real-time verification of model correctness and to guard against the use of models that exploit confounding variables. Motivated by the need for explainable models, we address the challenging task of explainable multiple abnormality classification in volumetric medical images. We propose a novel attention mechanism, HiResCAM, that highlights relevant regions within each volume for each abnormality queried. We investigate the relationship between HiResCAM and the popular model explanation method Grad-CAM, and demonstrate that HiResCAM yields better performance on abnormality localization and produces explanations that are more faithful to the underlying model. Finally, we introduce a mask loss that leverages HiResCAM to require the model to predict abnormalities based on only the organs in which those abnormalities appear. Our innovations achieve a 37 resulting in state-of-the-art weakly supervised organ localization of abnormalities in the RAD-ChestCT data set of 36,316 CT volumes. We also demonstrate on PASCAL VOC 2012 the different properties of HiResCAM and Grad-CAM on natural images. Overall, this work advances convolutional neural network explanation approaches and the clinical applicability of multi-abnormality modeling in volumetric medical images.

READ FULL TEXT

page 1

page 3

page 4

page 7

page 9

research
11/24/2021

Explainable multiple abnormality classification of chest CT volumes with AxialNet and HiResCAM

Understanding model predictions is critical in healthcare, to facilitate...
research
08/09/2023

Rapid Training Data Creation by Synthesizing Medical Images for Classification and Localization

While the use of artificial intelligence (AI) for medical image analysis...
research
06/07/2022

Transformer-based Personalized Attention Mechanism (PersAM) for Medical Images with Clinical Records

In medical image diagnosis, identifying the attention region, i.e., the ...
research
04/27/2021

Weakly Supervised Volumetric Segmentation via Self-taught Shape Denoising Model

Weakly supervised segmentation is an important problem in medical image ...
research
03/12/2022

Evaluating Explainable AI on a Multi-Modal Medical Imaging Task: Can Existing Algorithms Fulfill Clinical Requirements?

Being able to explain the prediction to clinical end-users is a necessit...
research
12/30/2019

A New Approach for Explainable Multiple Organ Annotation with Few Data

Despite the recent successes of deep learning, such models are still far...
research
06/06/2022

Dual Decomposition of Convex Optimization Layers for Consistent Attention in Medical Images

A key concern in integrating machine learning models in medicine is the ...

Please sign up or login with your details

Forgot password? Click here to reset