Horizon Visibility Graphs and Time Series Merge Trees are Dual

06/20/2019
by   Colin Stephen, et al.
0

In this paper we introduce the horizon visibility graph, a simple extension to the popular horizontal visibility graph representation of a time series, and show that it possesses a rigorous mathematical foundation in computational algebraic topology. This fills a longstanding gap in the literature on the horizontal visibility approach to nonlinear time series analysis which, despite a suite of successful applications across multiple domains, lacks a formal setting in which to prove general properties and develop natural extensions. The main finding is that horizon visibility graphs are dual to merge trees arising naturally over a filtered complex associated to a time series, while horizontal visibility graphs are weak duals of these trees. Immediate consequences include availability of tree-based reconstruction theorems, connections to results on the statistics of self-similar trees, and relations between visibility graphs and the emerging field of applied persistent homology.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset