Identifying Wrongly Predicted Samples: A Method for Active Learning

10/14/2020
by   Rahaf Aljundi, et al.
0

State-of-the-art machine learning models require access to significant amount of annotated data in order to achieve the desired level of performance. While unlabelled data can be largely available and even abundant, annotation process can be quite expensive and limiting. Under the assumption that some samples are more important for a given task than others, active learning targets the problem of identifying the most informative samples that one should acquire annotations for. Instead of the conventional reliance on model uncertainty as a proxy to leverage new unknown labels, in this work we propose a simple sample selection criterion that moves beyond uncertainty. By first accepting the model prediction and then judging its effect on the generalization error, we can better identify wrongly predicted samples. We further present an approximation to our criterion that is very efficient and provides a similarity based interpretation. In addition to evaluating our method on the standard benchmarks of active learning, we consider the challenging yet realistic scenario of imbalanced data where categories are not equally represented. We show state-of-the-art results and better rates at identifying wrongly predicted samples. Our method is simple, model agnostic and relies on the current model status without the need for re-training from scratch.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
08/20/2021

Influence Selection for Active Learning

The existing active learning methods select the samples by evaluating th...
research
04/05/2021

Stopping Criterion for Active Learning Based on Error Stability

Active learning is a framework for supervised learning to improve the pr...
research
12/20/2022

Temporal Output Discrepancy for Loss Estimation-based Active Learning

While deep learning succeeds in a wide range of tasks, it highly depends...
research
04/10/2020

State-Relabeling Adversarial Active Learning

Active learning is to design label-efficient algorithms by sampling the ...
research
04/14/2019

Robust and Discriminative Labeling for Multi-label Active Learning Based on Maximum Correntropy Criterion

Multi-label learning draws great interests in many real world applicatio...
research
04/06/2021

Low-Regret Active learning

We develop an online learning algorithm for identifying unlabeled data p...
research
12/15/2022

Man-recon: manifold learning for reconstruction with deep autoencoder for smart seismic interpretation

Deep learning can extract rich data representations if provided sufficie...

Please sign up or login with your details

Forgot password? Click here to reset