Image Score: How to Select Useful Samples
There has long been debates on how we could interpret neural networks and understand the decisions our models make. Specifically, why deep neural networks tend to be error-prone when dealing with samples that output low softmax scores. We present an efficient approach to measure the confidence of decision-making steps by statistically investigating each unit's contribution to that decision. Instead of focusing on how the models react on datasets, we study the datasets themselves given a pre-trained model. Our approach is capable of assigning a score to each sample within a dataset that measures the frequency of occurrence of that sample's chain of activation. We demonstrate with experiments that our method could select useful samples to improve deep neural networks in a semi-supervised leaning setting.
READ FULL TEXT