Impact of Phase-Noise and Spatial Correlation on Double-RIS-Assisted Multiuser MISO Networks
We study the performance of a phase-noise impaired double reconfigurable intelligent surface (RIS)-aided multiuser (MU) multiple-input single-output (MISO) system under spatial correlation at both RISs and base-station (BS). The downlink achievable rate is derived in closed-form under maximum ratio transmission (MRT) precoding. In addition, we obtain the optimal phase-shift design at both RISs in closed-form for the considered channel and phase-noise models. Numerical results validate the analytical expressions, and highlight the effects of different system parameters on the achievable rate. In particular, it is demonstrated that while phase-noise at RISs and spatial correlation at BS are capacity limiting factors, the spatial correlation at both RISs is essential to obtain high achievable rates.
READ FULL TEXT