Implicit algorithms for eigenvector nonlinearities

02/28/2020
by   Elias Jarlebring, et al.
0

We study and derive algorithms for nonlinear eigenvalue problems, where the system matrix depends on the eigenvector, or several eigenvectors (or their corresponding invariant subspace). The algorithms are derived from an implicit viewpoint. More precisely, we change the Newton update equation in a way that the next iterate does not only appear linearly in the update equation. Although, the modifications of the update equation make the methods implicit we show how corresponding iterates can be computed explicitly. Therefore we can carry out steps of the implicit method using explicit procedures. In several cases, these procedures involve a solution of standard eigenvalue problems. We propose two modifications, one of the modifications leads directly to a well-established method (the self-consistent field iteration) whereas the other method is to our knowledge new and has several attractive properties. Convergence theory is provided along with several simulations which illustrate the properties of the algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset