Incorporating Deep Q – Network with Multiclass Classification Algorithms
In this study, we explore how Deep Q-Network (DQN) might improve the functionality of multiclass classification algorithms. We will use a benchmark dataset from Kaggle to create a framework incorporating DQN with existing supervised multiclass classification algorithms. The findings of this study will bring insight into how deep reinforcement learning strategies may be used to increase multiclass classification accuracy. They have been used in a number of fields, including image recognition, natural language processing, and bioinformatics. This study is focused on the prediction of financial distress in companies in addition to the wider application of Deep Q-Network in multiclass classification. Identifying businesses that are likely to experience financial distress is a crucial task in the fields of finance and risk management. Whenever a business experiences serious challenges keeping its operations going and meeting its financial responsibilities, it is said to be in financial distress. It commonly happens when a company has a sharp and sustained recession in profitability, cash flow issues, or an unsustainable level of debt.
READ FULL TEXT