Indecision Trees: Learning Argument-Based Reasoning under Quantified Uncertainty

06/23/2022
by   Jonathan S. Kent, et al.
0

Using Machine Learning systems in the real world can often be problematic, with inexplicable black-box models, the assumed certainty of imperfect measurements, or providing a single classification instead of a probability distribution. This paper introduces Indecision Trees, a modification to Decision Trees which learn under uncertainty, can perform inference under uncertainty, provide a robust distribution over the possible labels, and can be disassembled into a set of logical arguments for use in other reasoning systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset