Inference over Wireless IoT Links with Importance-Filtered Updates
We consider a communication cell comprised of Internet-of-Things (IoT) nodes transmitting to a common Access Point (AP). The nodes in the cell are assumed to generate data samples periodically, which are to be transmitted to the AP. The AP hosts artificial deep neural networks and it is able to make inferences based on the received data samples. We address the following tradeoff: The more often the IoT nodes transmit, the higher the accuracy of the inference made by the AP, but also the higher the energy expenditure at the IoT nodes. We propose a data filtering scheme employed by the IoT nodes, which we refer to as distributed importance filtering. The IoT nodes do not have an inherent learning capability and the data filtering scheme operates under periodic instructions from the neural network placed at the AP. The proposed scheme is tested in two practical scenarios: leakage detection in water distribution networks and air-pollution detection in urban areas. The results show that the proposed scheme offers significant benefits in terms of network longevity, whilst maintaining high inference accuracy. Our approach reduces the the computational complexity for training the model and obviates the need for data pre-processing, which makes it highly applicable in practical IoT scenarios.
READ FULL TEXT