Instance Enhancement Batch Normalization: an Adaptive Regulator of Batch Noise
Batch Normalization (BN) (Ioffe and Szegedy 2015) normalizes the features of an input image via statistics of a batch of images and this batch information is considered as batch noise that will be brought to the features of an instance by BN. We offer a point of view that self-attention mechanism can help regulate the batch noise by enhancing instance-specific information. Based on this view, we propose combining BN with a self-attention mechanism to adjust the batch noise and give an attention-based version of BN called Instance Enhancement Batch Normalization (IEBN) which recalibrates channel information by a simple linear transformation. IEBN outperforms BN with a light parameter increment in various visual tasks universally for different network structures and benchmark data sets. Besides, even if under the attack of synthetic noise, IEBN can still stabilize network training with good generalization. The code of IEBN is available at https://github.com/gbup-group/IEBN
READ FULL TEXT