Integrating fuzzy trajectory data and artificial intelligence methods for multi-style lane-changing behavior prediction
Artificial intelligence algorithms have been extensively applied in the field of intelligent transportation, especially for driving behavior analysis and prediction. This study proposes a novel framework by integrating fuzzy trajectory data, unsupervised learning and supervised learning methods to predict lane-changing behaviors taking multi driving styles into account. The microscopic trajectory data from the Highway Drone Dataset (HighD) are employed to construct two types of datasets, including precise trajectory datasets and fuzzy trajectory datasets for lane-changing prediction models. The fuzzy trajectory data are developed based on different driving styles, which are clustered by the K-means algorithm. Two typical supervised learning methods, including random forest and long-short-term memory combined with convolutional neural network, are further applied for lane-changing behavior prediction. Results indicate that (1) the proposed integration approach performs better than the conventional lane-changing prediction; (2) the relative speed-related features have a greater contribution to the lane-changing prediction after being processed by fuzzy rules based on driving styles; and (3) the difference among driving styles is more reflected from the state of lateral movement rather than the lane-changing duration.
READ FULL TEXT