Internal Contrastive Learning for Generalized Out-of-distribution Fault Diagnosis (GOOFD) Framework
Fault diagnosis is essential in industrial processes for monitoring the conditions of important machines. With the ever-increasing complexity of working conditions and demand for safety during production and operation, different diagnosis methods are required, and more importantly, an integrated fault diagnosis system that can cope with multiple tasks is highly desired. However, the diagnosis subtasks are often studied separately, and the currently available methods still need improvement for such a generalized system. To address this issue, we propose the Generalized Out-of-distribution Fault Diagnosis (GOOFD) framework to integrate diagnosis subtasks, such as fault detection, fault classification, and novel fault diagnosis. Additionally, a unified fault diagnosis method based on internal contrastive learning is put forward to underpin the proposed generalized framework. The method extracts features utilizing the internal contrastive learning technique and then recognizes the outliers based on the Mahalanobis distance. Experiments are conducted on a simulated benchmark dataset as well as two practical process datasets to evaluate the proposed framework. As demonstrated in the experiments, the proposed method achieves better performance compared with several existing techniques and thus verifies the effectiveness of the proposed framework.
READ FULL TEXT