Investigation of Multimodal Features, Classifiers and Fusion Methods for Emotion Recognition

09/13/2018
by   Zheng Lian, et al.
0

Automatic emotion recognition is a challenging task. In this paper, we present our effort for the audio-video based sub-challenge of the Emotion Recognition in the Wild (EmotiW) 2018 challenge, which requires participants to assign a single emotion label to the video clip from the six universal emotions (Anger, Disgust, Fear, Happiness, Sad and Surprise) and Neutral. The proposed multimodal emotion recognition system takes audio, video and text information into account. Except for handcraft features, we also extract bottleneck features from deep neutral networks (DNNs) via transfer learning. Both temporal classifiers and non-temporal classifiers are evaluated to obtain the best unimodal emotion classification result. Then possibilities are extracted and passed into the Beam Search Fusion (BS-Fusion). We test our method in the EmotiW 2018 challenge and we gain promising results. Compared with the baseline system, there is a significant improvement. We achieve 60.34 testing dataset, which is only 1.5 method is very competitive.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset