Keiki: Towards Realistic Danmaku Generation via Sequential GANs
Search-based procedural content generation methods have recently been introduced for the autonomous creation of bullet hell games. Search-based methods, however, can hardly model patterns of danmakus – the bullet hell shooting entity – explicitly and the resulting levels often look non-realistic. In this paper, we present a novel bullet hell game platform named Keiki, which allows the representation of danmakus as a parametric sequence which, in turn, can model the sequential behaviours of danmakus. We employ three types of generative adversarial networks (GANs) and test Keiki across three metrics designed to quantify the quality of the generated danmakus. The time-series GAN and periodic spatial GAN show different yet competitive performance in terms of the evaluation metrics adopted, their deviation from human-designed danmakus, and the diversity of generated danmakus. The preliminary experimental studies presented here showcase that potential of time-series GANs for sequential content generation in games.
READ FULL TEXT