Learnability of Timescale Graphical Event Models

05/25/2020
by   Philipp Behrendt, et al.
0

This technical report tries to fill a gap in current literature on Timescale Graphical Event Models. I propose and evaluate different heuristics to determine hyper-parameters during the structure learning algorithm and refine an existing distance measure. A comprehensive benchmark on synthetic data will be conducted allowing conclusions about the applicability of the different heuristics.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro