Learning linear modules in a dynamic network with missing node observations

by   Karthik R. Ramaswamy, et al.

In order to identify a system (module) embedded in a dynamic network, one has to formulate a multiple-input estimation problem that necessitates certain nodes to be measured and included as predictor inputs. However, some of these nodes may not be measurable in many practical cases due to sensor selection and placement issues. This may result in biased estimates of the target module. Furthermore, the identification problem associated with the multiple-input structure may require determining a large number of parameters that are not of particular interest to the experimenter, with increased computational complexity in large-sized networks. In this paper, we tackle these problems by using a data augmentation strategy that allows us to reconstruct the missing node measurements and increase the accuracy of the estimated target module. To this end, we develop a system identification method using regularized kernel-based methods coupled with approximate inference methods. Keeping a parametric model for the module of interest, we model the other modules as Gaussian Processes (GP) with a kernel given by the so-called stable spline kernel. An Empirical Bayes (EB) approach is used to estimate the parameters of the target module. The related optimization problem is solved using an Expectation-Maximization (EM) method, where we employ a Markov-chain Monte Carlo (MCMC) technique to reconstruct the unknown missing node information and the network dynamics. Numerical simulations on dynamic network examples illustrate the potentials of the developed method.


page 1

page 2

page 3

page 4


A new kernel-based approach to system identification with quantized output data

In this paper we introduce a novel method for linear system identificati...

Bayesian kernel-based system identification with quantized output data

In this paper we introduce a novel method for linear system identificati...

Blind system identification using kernel-based methods

We propose a new method for blind system identification. Resorting to a ...

Outlier robust system identification: a Bayesian kernel-based approach

In this paper, we propose an outlier-robust regularized kernel-based met...

Estimation of sparse linear dynamic networks using the stable spline horseshoe prior

Identification of the so-called dynamic networks is one of the most chal...

Learning modular structures from network data and node variables

A standard technique for understanding underlying dependency structures ...

Node Failure Localisation Problem for Load Balancing Dynamic Networks

Network tomography has been used as an approach to the Node Failure Loca...

Please sign up or login with your details

Forgot password? Click here to reset