Learning Sensor Multiplexing Design through Back-propagation

05/23/2016
by   Ayan Chakrabarti, et al.
0

Recent progress on many imaging and vision tasks has been driven by the use of deep feed-forward neural networks, which are trained by propagating gradients of a loss defined on the final output, back through the network up to the first layer that operates directly on the image. We propose back-propagating one step further---to learn camera sensor designs jointly with networks that carry out inference on the images they capture. In this paper, we specifically consider the design and inference problems in a typical color camera---where the sensor is able to measure only one color channel at each pixel location, and computational inference is required to reconstruct a full color image. We learn the camera sensor's color multiplexing pattern by encoding it as layer whose learnable weights determine which color channel, from among a fixed set, will be measured at each location. These weights are jointly trained with those of a reconstruction network that operates on the corresponding sensor measurements to produce a full color image. Our network achieves significant improvements in accuracy over the traditional Bayer pattern used in most color cameras. It automatically learns to employ a sparse color measurement approach similar to that of a recent design, and moreover, improves upon that design by learning an optimal layout for these measurements.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset