DeepAI AI Chat
Log In Sign Up

Learning subtree pattern importance for Weisfeiler-Lehmanbased graph kernels

by   Dai Hai Nguyen, et al.
Kyoto University
The University of Tokyo

Graph is an usual representation of relational data, which are ubiquitous in manydomains such as molecules, biological and social networks. A popular approach to learningwith graph structured data is to make use of graph kernels, which measure the similaritybetween graphs and are plugged into a kernel machine such as a support vector machine.Weisfeiler-Lehman (WL) based graph kernels, which employ WL labeling scheme to extract subtree patterns and perform node embedding, are demonstrated to achieve great performance while being efficiently computable. However, one of the main drawbacks of ageneral kernel is the decoupling of kernel construction and learning process. For moleculargraphs, usual kernels such as WL subtree, based on substructures of the molecules, consider all available substructures having the same importance, which might not be suitable inpractice. In this paper, we propose a method to learn the weights of subtree patterns in the framework of WWL kernels, the state of the art method for graph classification task [14]. To overcome the computational issue on large scale data sets, we present an efficient learning algorithm and also derive a generalization gap bound to show its convergence. Finally, through experiments on synthetic and real-world data sets, we demonstrate the effectiveness of our proposed method for learning the weights of subtree patterns.


page 1

page 2

page 3

page 4


Neighborhood Preserving Kernels for Attributed Graphs

We describe the design of a reproducing kernel suitable for attributed g...

Graph Kernels: State-of-the-Art and Future Challenges

Graph-structured data are an integral part of many application domains, ...

Bayesian Optimisation of Functions on Graphs

The increasing availability of graph-structured data motivates the task ...

Bayesian Efficient Multiple Kernel Learning

Multiple kernel learning algorithms are proposed to combine kernels in o...

Robust Graph Embedding with Noisy Link Weights

We propose β-graph embedding for robustly learning feature vectors from ...

Literature Review: Graph Kernels in Chemoinformatics

The purpose of this review is to introduce the reader to graph kernels a...

Tractable Computation of Expected Kernels by Circuits

Computing the expectation of some kernel function is ubiquitous in machi...